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Abstract

We investigate two families of extensions of the well-known Syracuse sequence. In the standard case,
starting from an initial integer v0 > 0, the sequence (vn) is defined by the recurrence: vn+1 = (3vn +1)/2 if
vn is odd, and vn/2 if vn is even.

For the generalizations studied here, we denote the sequence by (Vn) to clearly distinguish it from the
classical case. In all cases, the rule applied to even integers remains Vn+1 = Vn/2. We consider two types of
extensions:

(i) 3n+ b extensions: for a fixed odd integer b, the transformation becomes Vn+1 = (3Vn + b)/2 when Vn

is odd;

(ii) The 5n+ 1 extension: the rule becomes Vn+1 = (5Vn + 1)/2 when Vn is odd.

Building upon results established in the classical case (when b = 1), we show that:

� for every odd integer b, the 3n + b extension admits only finitely many cycles, all of which can be
detected by testing initial values V0 ≤ 2f(b) · |b|. Moreover, no sequence diverges. In particular, when
|b| < 210, the bound f(b) = 48 suffices;

� in contrast, the 5n+ 1 extension admits at least one divergent orbit.

1 Introduction

The Syracuse (or Collatz) sequence is defined on N by the following rule, applied to an initial integer v0 > 0:

vn+1 =

{
vn/2, if vn is even,

(3vn + 1)/2, if vn is odd.

The Syracuse conjecture asserts that every such sequence eventually reaches the value 1 in a finite number
of steps. A complete proof of this result was proposed by the author in a previous work [1].

In this paper, we extend the underlying dynamical process to two families of affine transformations. To
clearly distinguish the standard case from the generalized setting, we adopt the following convention:

� The lowercase letter v denotes the sequence in the classical case;

� The uppercase letter V is used for sequences arising from the studied extensions.

In all cases, the rule applied to even integers remains unchanged: Vn+1 = Vn/2 when Vn is even.
We consider the following two types of extensions:

� 3n+ b extensions: for a fixed odd integer b, the transformation applied to odd integers becomes

Vn+1 = (3Vn + b)/2, if Vn is odd.

� The 5n+ 1 extension: in this case, the transformation becomes

Vn+1 = (5Vn + 1)/2, if Vn is odd.

For the 3n+b extensions, the structure of the proof closely parallels that of the standard case (b = 1) [1].
In particular, the tools developed in the proof of the Syracuse conjecture—ranking functions, logarithmic
bounds, and the Random List Theorem—are almost entirely reusable. We prove that all such sequences are
convergent and that the complete set of cycles can be explored within a bounded domain that depends on b.

It should be noted, however, that when b < 0, the proof becomes significantly more involved. Several
properties used in the b > 0 case cannot be directly applied, and key arguments must be reconstructed in a
symmetric framework.
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The 5n + 1 extension, in contrast, exhibits divergent orbits. Once again, we make use of the Random
List Theorem established in the classical case, but a careful adaptation of the enumeration of candidate lists
is required—this being the most delicate part of the new proof.

Once these limiting cases are addressed, it is natural to consider more general sequences defined by

Vn+1 =


Vn

2
, if Vn is even,

aVn + b

2
, if Vn is odd, where a and b are odd.

or, more generally, by allowing both parameters a and b to be even:

Vn+1 =


Vn

2
, if Vn is even,

aVn + b

2
, if Vn is odd, where a and b are even.

The asymptotic behavior of these general extensions can then be analyzed using similar principles, with

suitable adjustments involving the logarithmic constant X =
ln 2

ln a− ln 2
, the presence of trivial cycles for

certain values of b, and the divergent or non-divergent nature of the trajectories depending on the value of
a.

2 The 3n+ b Extensions

2.1 Definitions

2.1.1 Syracuse Sequence with Parameter b: V

Let b be a fixed odd integer. We define the sequence (Vn) by the recurrence:

Vn+1 =

{
Vn/2, if Vn is even (type 0 transition),

(3Vn + b)/2, if Vn is odd (type 1 transition).

For the sake of precision, this sequence can also be defined via iteration of the function Tb, that is,
Vn = T

(n)
b (V0).

Remarks.

� An alternative approach is to restrict to b > 0 and allow V0 < 0. Indeed, when b < 0, if we define
V 0 = −V0 < 0 and b = −b > 0, then by a straightforward induction one obtains V n = −Vn for all n.

� This representation will be used later to simplify the proof in the case b < 0.

� To simplify notation, the dependence of V on b will not always be made explicit.

2.1.2 Approximated Sequence: V ′

We define the approximated sequence (V ′
n) by:

V ′
n+1 =

{
V ′
n/2, if Vn is even,

(3V ′
n)/2, if Vn is odd.

We introduce a remainder term Rn defined by Vn = V ′
n +Rn, whose detailed analysis will be carried out

later.

2.2 Main Theorem for the 3n+ b Extensions

Théorème 2.1 (Extensions 3n + b, odd b > 0). There exists an integer N0 = N0(b) such that, for any
initial value V0 ≤ 2N0 |b|, the sequence (Vn) eventually enters a finite cycle. In particular, no such sequence
diverges for any V0 > 0.

When |b| < 210, a preliminary verification up to N0 = 48 suffices to rule out the existence of nontrivial
cycles. As |b| increases, the required bound N0 to ensure this exclusion grows slowly. Beyond a certain
threshold, even this initial verification becomes impractical.
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2.2.1 Proof in the Case 0 < b < 1024

Proof. We follow the complete proof developed for the standard case (b = 1) [1], indicating the specific
modifications required for the (3n+ b) extension.

� Lemma 3.1. The probability that V1 is even remains 1/2 for V0 > 4. One only needs to include the
binary decomposition of b in the probabilistic analysis.

� Proposition 4.1. We immediately have Rn = b ·rn, which alters all subsequent upper bound formulas
involving Rn.

� Lists JGL(N,V0).

– The definition remains unchanged.

– A very trivial cycle of length 2 is observed for V0 = b, corresponding to the transition list 10: we
have V1 = (3b+ b)/2 = 2b and then V2 = b.

– The values of n remain unchanged; the corresponding VMax(n) values are simply multiplied by
|b|.

– The record values of VMax(n) are reached at the same indices as in the case b = 1.

– The constant cα becomes c′α in the case b > 0, since the maximum values VMax(n) are scaled by
|b|.
In the standard case, it is shown that for α > 48, a constant cα = ⌈2,017,000α⌉ is sufficient to
bound the size of the random transition lists required to guarantee the existence of at least p+ 1
solutions.
In the general case b > 0, the growth of VMax(n) requires considering an adjusted index α′ =
α+ log2 b, since a multiplicative factor b on the integers translates into an additive shift in base-2
logarithmic scale.
Hence, we obtain:

c′α = 2,017,000α > 2,017,000(α′ − log2 b).

Since we assume b < 210, it follows that log2 b < 10, so

c′α > 2,017,000(α′ − 10).

Moreover, given that α′ > 48, we deduce:

c′α > 2,017,000

(
α′ − 10α′

48

)
= 1,596,791α′.

Likewise, given that α′ > 22, it follows that:

c′α > 639

(
α′ − 10α′

22

)
> 347α′.

This explicit bound allows us to preserve all the asymptotic properties used in the proof, especially
in the analysis of the parameter e in the Random List Theorem.

� Testing the conjecture up to V0 ≤ 2α|b|. For 0 < b < 1024 and α = 22 (i.e., V0 < 222b), the
following results are obtained:

– 259 values of b admit only the very trivial cycle;

– the longest cycle has length 426 and occurs for b = 563, V0 = 19;

– 2864 trivial cycles were identified.

The complete tests and results are available online [2].

Remarque 2.2. If we apply the Central Limit Theorem version of the Random List Theorem, choosing
α = 22 instead of 48 is sufficient. The tests become significantly shorter while leading to essentially
the same conclusion.

� Elimination of certain transition lists. Some transition lists correspond to orbits starting at a
value W0 < v0 that eventually reach a cycle whose minimal value is v0. In such cases, the associated
transition list must be discarded.

For instance, for b = 5, the cycle {19, 31, 49, 76, 38} (corresponding to the list 11100) is reached by
the orbit starting at W0 = 3. Thus, for a list of length N = 22, one must exclude the transition list

11101 11100 11100 11100 11

in which we identify:

– the initial transitions 11101 allowing entry into the cycle from W0 = 3;

– multiple repetitions of the cycle pattern 11100;

– a final truncated pattern due to the specific value of N .
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This phenomenon concerns at most a few transition lists for each value of b within the considered
interval. The complete list of such cases can be found in the online numerical results [2].

� Inductive step. We apply the Random List Theorem with α > 48 and p = 1,700,000. Let n = α+ p,
N = ⌈1,596,791α⌉, and define

f(N) < 1.2 p+ 0.95N.

Then we compute:
e = n−N + f(N),

e < n+ 1.2 p− 0.05N = 2.2 p− 79,838α.

For α ≥ 48, this yields e < −92,224 ≪ 20. According to the theorem, this implies that at most
1,052,383 solutions can be found with the probability of 1 − 10−3 using the Berry–Esseen inequality,
while we expect at least 1,700,000. This contradiction validates the recurrence step.

Remarque 2.3. If we apply the Random List Theorem with α > 22 and p = 200, and let n = α+ p
and N = ⌈437α⌉, then we obtain: e < −39 ≪ 6. Using the CLT part of the theorem, this leads to a
contradiction since 201≫ 96.

2.2.2 Proof in the Case −1024 < b < 0

Proof. As in the standard case (b = 1) [1], the proof relies on the same general structure, but requires
significant adjustments due to the asymmetry introduced by a strictly negative parameter b.

� Reduction to the case b > 0. We consider the associated sequence V n = −Vn, where b = −b > 0
and V 0 = −V0 < 0. This yields a symmetric dynamical system whose behavior is analogous to the
case b > 0.

� Transition structure. The sequence V n satisfies the same recurrence:

V n+1 =

{
V n/2, if V n is even,

(3V n + b)/2, if V n is odd.

� Adapted definition of JGL(N,V0). The construction of the threshold JGL(N,V0) is based on the
symmetrized sequence V n, using either the maximum among the first N values of the orbit or, more
conveniently, the minimum of their absolute values. This approach exploits the structural symmetry
of the dynamical system and allows the reuse of tools developed for the case b > 0.

V 0 < 0

Figure 1: Evolution of the sequence (V n) for a negative initial value V 0 < 0.

– Construction of the list JGL(n+ 1). Starting from the expression

V n =
3mn

2n
· V 0 +Rn,

we examine whether a type 0 transition is possible at the next step:

V n+1 =
V n

2
≤ V 0,

which is equivalent to: (
1− 3mn

2n+1

)
V 0 ≥

Rn

2
.

Two cases arise:

* If 3mn

2n+1 < 1, then the inequality is always false (since V 0 < 0 and Rn > 0), so tn = 1.
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* If 3mn

2n+1 > 1, then a type 0 transition is possible if

V 0 ≤
2nRn

2n+1 − 3mn
= VMax(n).

We distinguish the following subcases:

· If VMax(n) > V 0, then tn = 0 is possible: the transition matches that of Ceil(n+ 1);

· If VMax(n) = V 0, then we obtain a cycle;

· If VMax(n) < V 0, then tn = 1, and the transition differs from that of Ceil(n+ 1).

– Numerical results for b = −1. A numerical test performed up to N = 500,000 with 20-
digit precision identifies the values of n for which VMax(n) reaches a record. These correspond
to potential divergence points compared to the behavior predicted by Ceil(n). The table below
summarizes the key data with c = n · ln 2/ ln(⌊VMax(n)⌋) :

k m d n = m+ d VMax(n) c

1 2 0 2 5 ≈ 22.322 8.614e-1

2 7 3 10 27.10 ≈ 24.760 2.103

3 12 6 18 219.31 ≈ 27.777 2.315

4 53 30 83 6143.16 ≈ 212.585 6.595

5 106 61 167 6143.16 ≈ 212.585 13.270

6 265 154 419 6143.16 ≈ 212.585 33.294

7 318 185 503 6143.16 ≈ 212.585 39.969

8 359 209 568 81063.35 ≈ 216.307 34.832

9 665 388 1053 ≈ 221.805 48.291

10 3990 2333 6323 ≈ 221.805 289.976

11 7980 4667 12647 ≈ 221.805 579.997

12 10640 6223 16863 ≈ 221.805 773.344

13 16266 9514 25780 ≈ 227.195 947.974

14 31867 18640 50507 ≈ 229.974 1685.015

15 95601 55922 151523 ≈ 229.974 5055.112

16 111202 65048 176250 ≈ 232.790 5375.095

17 222404 130097 352501 ≈ 232.790 10750.221

18 301739 176505 478244 ≈ 234.256 13960.753

66 32153285 18808465 50961750 ≈ 247.979 1062169.9

67 42934559 25115106 68049665 ≈ 249.227 1382371.4

Remarque 2.4 (Structure of the Approximants). The quotients mn
dn+1

, which govern significant
changes in the growth of VMax(n), correspond exactly to the upper approximations of the real
number

X =
ln 2

ln 3− ln 2
.

All other fractions that appear throughout the iterations are non-reduced multiples of these ap-
proximants and have no influence on the global dynamics.

The purpose of the following paragraphs is to justify this observation through the analysis of the
numerical results presented above.

– Upper Approximations of X via the Stern–Brocot Tree.
Our aim is to identify the values of n for which VMax(n) reaches a new record and to establish
that these correspond precisely to the upper rational approximations of the real number

X =
ln 2

ln 3− ln 2

by reduced fractions m
d
.

To do so, we use the classical method of the Stern–Brocot tree:

* We begin with the initial bounds a
b
= 0

1
and c

d
= 1

0
.

* At each step, we consider the mediant a+c
b+d

and compare it to X:

· If X ≤ a+c
b+d

, then this new fraction becomes a better upper approximation of X, and we

update the upper bound: c
d
← a+c

b+d
.

· If X > a+c
b+d

, then we update the lower bound: a
b
← a+c

b+d
.

* This process is repeated until the desired precision is reached.
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The following numerical results correspond to the first few upper approximations of X:

k m d N diff = m
d
−X d2|diff| d3|diff|

1 2 1 3 -2.9049Ö10−1 2.9049Ö10−1 2.90Ö10−1

2 7 4 11 -4.0489Ö10−2 6.4782Ö10−1 2.59

3 12 7 19 -4.7744Ö10−3 2.3395Ö10−1 1.64

4 53 31 84 -1.6613Ö10−4 1.5965Ö10−1 4.95

5 359 210 569 -1.2518Ö10−5 5.5205Ö10−1 115.93

6 665 389 1054 -2.7677Ö10−7 4.1881Ö10−2 16.29

7 16266 9515 25781 -6.5991Ö10−9 5.9746Ö10−1 5684.79

8 31867 18641 50508 -9.6119Ö10−10 3.3400Ö10−1 6226.11

9 111202 65049 176251 -1.3650Ö10−10 5.7758Ö10−1 37571.28

10 301739 176506 478245 -4.9404Ö10−11 1.5392 271669.93

11 492276 287963 780239 -2.9730Ö10−11 2.4653 709903.47

12 682813 399420 1082233 -2.1035Ö10−11 3.3559 1340413.61

– Theorem on the Records of VMax(n).

Théorème 2.5. The record values of the function n 7→ VMax(n) occur precisely at indices n such
that n + 1 = m + d, where m

d
is an upper approximation of X = ln 2

ln 3−ln 2
obtained through the

Stern–Brocot tree.

Proof. The proof may be regarded as a direct adaptation of the argument used in the case b > 0,
replacing lower approximations of X by their upper counterparts, which are more relevant in
this context. The structural argument relies on the same growth mechanisms of VMax(n), and a
parallel reasoning could be followed.
However, the focus here is on a distinct and essential phenomenon: the appearance, in numerical
experiments, of reducible fractions equal to upper approximations of X. While the Stern–Brocot
tree generates only irreducible approximants, these multiple fractions naturally arise through rep-
etition of patterns and must be understood, justified, and then dismissed as redundant within the
structural analysis of cycles.
The remainder of the proof aims to explain this phenomenon based on the transition patterns
observed in the structure of the list Ceil(n), and to rigorously justify why only the irreducible
upper approximants of X should be retained.
In the proof of the classical Syracuse conjecture (for b = 1), it was shown that the transition list
Ceil(n) contains recurrent motifs—identical transition blocks repeated several times. These motifs
appear for lengths N1 corresponding to (lower) approximations of X.
For example, forN1 = 1054, the list Ceil(N1) contains a structuring motif that repeats for multiples
N0 = kN1 with 1 < k ≤ p. Indeed, when the associated fraction remains constant, we have:

X − m0

d0
= X − m1

d1
,

and denoting by Rk the associated remainders, we deduce:

VMax(N0 − 1)

VMax(N1 − 1)
=

R0

R1
.

Using the formula obtained in Section 4.5, we find:

R0 =
1− (F1)

k

1− F1
·R1,

where F1 is a factor related to the geometric growth of the sequence.
Since F1 > 1 (as we are considering an upper approximation), it follows that

(F1)
k > F1 ⇒ 1− (F1)

k < 1− F1 ⇒ 1− (F1)
k

1− F1
> 1,

and therefore:
VMax(N0 − 1) > VMax(N1 − 1).

Thus, every multiple of an upper approximation yields a larger value of VMax(n) and should
theoretically appear in the list of records.

However, in practice, some corresponding rows may be missing from the numerical results due
to rounding errors or limitations in arithmetic precision. Increasing the computational precision
allows these cases to reappear.

Nonetheless, such cases may be ignored for two reasons:
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* First, the values VMax(kN1−1) and VMax(N1−1) are very close, offering no significant gain
in the analysis.

* Second, if a cycle of length N1 exists, then its multiples kN1 do not correspond to minimal
cycles. The goal is to identify the fundamental structures.

This establishes that the indices n corresponding to records of VMax(n) coincide exactly with the
irreducible upper approximations of X, thereby revealing the rational structure underlying the
extremal behavior of the sequence.

– The constant cα becomes c′α in the case b < 0, since the maximal values VMax(n) are scaled by
the factor |b|.
For b = 1, based on previous results, it can be shown that for α > 22 (sufficient provided that
the Central Limit Theorem is applied), a constant cα = ⌈945α⌉ suffices to bound the size of the
random lists required to guarantee the existence of at least p+ 1 solutions.
In the general case b < 0, the growth of VMax(n) necessitates the introduction of an adjusted
index α′ = α+log2(|b|), since multiplication by |b| translates, in base-2 logarithmic terms, into an
additive shift.
From this, we deduce:

c′α = 945α > 945(α′ − log2 |b|).
Given the assumption that |b| < 210, we have log2 |b| < 10, so

c′α > 945(α′ − 10).

Moreover, since α′ > 22, we obtain:

c′α > 945

(
α′ − 10α′

22

)
= 515α′.

Likewise, given that α′ > 48, it follows that:

c′α > 1,382,371

(
α′ − 10α′

48

)
> 1,094,377α′.

This explicit bound allows all the asymptotic properties used in the proof to be preserved, partic-
ularly in the analysis of the parameter e in the Random List Theorem.

� Testing the Conjecture up to V0 ≤ 2α|b|
For each value b < 0, we test the conjecture for all initial values v0 < 2α|b|, with α = 22. In every case,
we observe the emergence of a very simple cycle, referred to as a very trivial cycle, defined as follows:

– For every b < 0, choosing v0 = −b (which is odd) immediately yields a cycle of length 1:

v1 =
3v0 + b

2
=
−3b+ b

2
= −b = v0.

– We also identify two families of short recurrent cycles:

* If b = −3(2k+1) for some k > 0, then v0 = −b
3

= −(2k+1) is odd and leads to v1 = 0, hence
vn = 0 for all n ≥ 1: this is an absorbing cycle.

* If b = −9(2k+1) for some k > 0, then v0 = −b
9

= 2k+1 leads to a 2-cycle that passes through
b:

v1 =
3v0 + b

2
=
−b+ b

2
= 0,

v2 =
3v1 + b

2
=

b

2
,

v3 =
3v2 + b

2
=

3b+ b

2
= 2b, v4 =

2b

2
= b = v2.

This results in a 2-cycle with minimum value b.

Systematic tests were carried out for all values −1024 < b < 0, with v0 < −222b.
The numerical results are as follows:

– 256 values of b admit only the very trivial cycle.

– The longest detected cycle has length 426, occurring for b = −563 and v0 = −19.
– A total of 3927 ”trivial” cycles were identified.

Elimination of Specific Transition Lists.

As in the case b > 0, we must exclude transition lists that reach a cycle from an initial value W0 < v0,
where v0 is the minimum of the cycle. Such a list L(N,m, d) consists of an initial access phase followed
by several (possibly fractional) repetitions of the transition pattern of the cycle.
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For instance, the list consisting solely of ”1” transitions (which corresponds to the very trivial cycle)
must be excluded.

These tests were performed over the same range of values for b. For each b < 0, we verify whether a
trivial cycle can be reached from a value strictly smaller than its minimum. This ensures that vn > v
for all n, justifying the exclusion.

The numerical results are available online [2], and enumerate all such cases, which remain scarce for
each value of b.

� Recurrence Step.

We apply the Random List Theorem with α > 22 and p = 230. Let n = α + p, N = ⌈515α⌉, and
assume

f(N) < 1.2 p+ 0.95N.

then we compute:
e = n−N + f(N),

e < 2.2 p− 24α.

For α ≥ 22, this yields e < −22≪ 6. According to the theorem, using the TCL part, this means that
no more than 96 solutions can be found, while at least 231 are expected. This contradiction confirms
the recurrence property.

Remarque 2.6. For α > 48, let p = 1,190,000, n = α+ p and N = ⌈1,094,377α⌉.
Then e < 2.2 p− 54,717α < −8,416≪ 20.

This leads to a contradiction under the Berry–Esseen inequality, as we have 1,190,000≫ 1,052,383.

3 The 5n+ 1 Extension

3.1 Definitions

3.1.1 Extended Reduced Syracuse Sequence: V

Let V0 > 0 be an initial integer. The sequence (Vn)n≥0 is defined recursively by the rule:

Vn+1 =

Vn/2 if Vn is even (type 0 transition),

(5Vn + 1)/2 if Vn is odd (type 1 transition).

This sequence defines a natural extension of the classical Syracuse sequence. We may also write Vn =
T (n)(V0) to emphasize the iteration of the associated transformation T .

3.1.2 Approximated Sequence: V ′

We define the sequence (V ′
n)n≥0 by:

V ′
n+1 =

V ′
n/2 if Vn is even,

5V ′
n/2 if Vn is odd,

with V ′
0 = V0.

This defines a simplified approximation of Vn, in which the constant term +1 in odd transitions is
neglected.

We then define the residue term Rn by

Vn = V ′
n +Rn,

which will be analyzed in greater detail in the following sections.

3.2 Theorem for the 5n+ 1 Extension

The sequence (Vn) defined by the 5n+1 extension exhibits behavior fundamentally different from the classical
Syracuse case. The following result summarizes its main properties:

Théorème 3.1. There are only finitely many cycles for the sequence defined by the 5n + 1 extension, all
of which can be detected by testing initial values V0 ≤ 223 = 8,388,608. Moreover, there exists at least one
value V0 for which the sequence diverges.

8



Experimental Evidence. Numerical tests were performed for all initial values V0 ≤ 220. To accelerate
computation, a stopping criterion was introduced: the sequence is considered divergent if, for some n > 800,
one has

Vn >

(
5

2

)60

V0.

Under this assumption, the following results were obtained:

� 4,174,834 values of V0 ≤ 223 do not satisfy the conjecture under this criterion. The first and last
such values are:

7, 9, 11, 21, . . . , 2015433, 2015435, 2015437, 2015439, 2015441, 2015443.

This number is close to 223/2 = 4,194,304, suggesting that only about 19,500 initial integers below 223

yield a convergent orbit.

� Three finite cycles were identified, with minimal values 1, 13, and 17, and respective lengths 5, 7, and
7:

{1, 3, 8, 4, 2} (transitions: 11000),

{13, 33, 83, 208, 104, 52, 26} (transitions: 1110000),

{17, 43, 108, 54, 27, 68, 34} (transitions: 1100100).

� It is worth noting that V0 = 5 leads to an orbit reaching the cycle with minimum value 13. This
trajectory will be excluded from the count when applying the theorem, although its impact is negligible
in the asymptotic estimate.

� Similar observations hold for extensions of the form 5n + b with odd b: a finite number of cycles,
all detectable under an explicit bound depending on b, and at least one initial value V0 leading to a
divergent orbit.

These results can be reproduced using the test files available online [2], associated with the 5n + b
extensions.

Proof. The proof relies on an adaptation of the reasoning used in the classical 3n + 1 case. However, two
major structural differences must be taken into account:

1. The fundamental constant X that governs the growth estimates of trajectories is here replaced by

X =
ln 2

ln 5− ln 2
,

due to the modified form of odd transitions.

2. The Random List Theorem is invoked in two distinct contexts:

� to show that no cycles exist beyond those detected by testing all initial values V0 ≤ 223;

� to prove the existence of at least one initial value V0 that leads to a divergent orbit.

Since the general argument closely mirrors that of the 3n + 1 case, we focus here only on the element
that is truly specific to this extension: the lower bound on the number of candidate transition lists in the
divergent case.

3.2.1 Steps Analogous to the Standard Proof

We follow, with appropriate adaptations, the main preliminary steps of the proof in the standard 3n + 1
case [1]. In particular:

� The Random List Theorem generalizes without difficulty to extensions of the form 5n+b with b odd, and
thus applies in particular to the 5n+ 1 case considered here. All underlying probabilistic assumptions
remain valid.

� The analytical properties concerning the approximated sequence V ′ and the residue term Rn remain
applicable, with the modification that the constant 3 in the odd transitions is replaced by 5. In
particular, the bounds on Rn and its asymptotic behavior retain the same qualitative structure.

� The transition list Ceil(N), defined by mn =
⌈
ln 2
ln 5
· n
⌉
, plays the same fundamental role. It exhibits

characteristic patterns related to the upper approximations of the constant

X =
ln 2

ln 5− ln 2
.

These patterns are visible in the associated numerical simulations. For example, for (N,m, d) =
(339, 146, 193), one recovers the usual structural inequalities:

mn

10
< Rn < mn,

which suffice to ensure the validity of the combinatorial arguments used in the remainder of the proof.
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� The construction of the boundary JGL(N, v0) follows exactly the same procedure as in the 3n+1 case.
The characterization of record values once again relies on the lower approximations of the constant X.
The minimal lengths cα of cycles for v0 = 2α thus satisfy the inequality:

cα > ⌈800α⌉ for all α ≥ 23.

These results are supported by the following numerical data, extracted from simulations related to the
5n+1 extension. They reveal a rapid growth in the maximum orbit size compatible with the transition
constraints. Let c = n · ln 2/ ln (⌊VMax(n)⌋) :

k m d n VMax(n) c

1 1 1 2 3.33 ≈ 2−1.585 0

2 2 2 4 1.29 ≈ 20.3626 ∞
3 3 3 6 20.33 ≈ 24.346 1.388

4 31 40 71 322.49 ≈ 28.333 8.522

5 59 77 136 1978.73 ≈ 210.950 12.420

6 205 270 475 9015.84 ≈ 213.138 36.154

7 351 463 814 22579.49 ≈ 214.463 56.283

8 497 656 1153 59600.21 ≈ 215.863 72.685

9 643 849 1492 569835.42 ≈ 219.120 78.033

10 4647 6142 10789 6.76× 106 ≈ 222.689 475.519

11 8651 11435 20086 3.52× 107 ≈ 225.070 801.203

12 21306 28164 49470 4.29× 108 ≈ 228.677 1725.051

13 97879 129388 227267 3.92× 1010 ≈ 235.190 6458.340

14 1936274 2559614 4495888 5.98× 1012 ≈ 242.444 105925.051

These data provide empirical confirmation that the JGL lists for the 5n+1 extension behave analogously
to those in the 3n+ 1 case, with appropriately adjusted constants.

3.2.2 Nonexistence of Additional Cycles

Proof. We have already established the following facts:

� If V0 = 2α is the minimal value of a hypothetical cycle, and lies within the interval

]VMax(NXk−1 − 1), VMax(NXk − 1)] ,

then the minimal length N of the cycle satisfies:

N = NXk > 800α, for α ≥ 23.

� The associated transition list, denoted L(N,m, d), satisfies:

m =

⌊
ln 2

ln 5
·N
⌋
,

and all elements of the cycle correspond to circular permutations sharing the same global characteristics
(N,m, d).

We now study the set Cy(N,V0) of transition lists L(N,m, d) such that V0 is the minimum of the orbit
among the first N terms (i.e., Vn ≥ V0 for all 0 ≤ n ≤ N), with m defined as above.

Using the inequality Vn+1 ≤ (5Vn+1)/2 ≤ 22Vn, an inductive argument analogous to that of the standard
case yields two key properties for the first p+ 1 terms V0, V1, . . . , Vp:

� Each Vi is a solution of a transition list in Cy2p(N,V0),
which means a list that is greater than JGL2p(N,V0)
in the partial order defined on transition lists, with

m =

⌊
ln 2

ln 5
(N − 2p)

⌋
.

� Each Vi belongs to the interval:
Vi ∈

[
V0, 2

2pV0

[
.
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v0

v1

v2

Figure 2: Cyclic visualization of the orbit with reference to the minimal value V0

Remarks.

� By considering the final terms of the cycle, it is easy to show that at least 3p+1 values of the orbit lie
within the interval

[
V0, 2

2pV0

]
(for example, VN−1 ≤ 2V0, VN−2 ≤ 22V0, etc.). This provides additional

margin in the application of the Random List Theorem.

� A similar strategy could be used in the standard 3n+1 case, likely with 4p+1 terms within the same
interval.

This diagram illustrates the structure of a cycle seen as a circular permutation from each Vn, and shows
that the first p+ 1 terms remain within a controlled zone.

Application of the Theorem. To conclude, we apply the Random List Theorem with:

n = α+ 2p, N = cα = ⌈800α⌉, for α > 23, p = 100.

We must bound the number of admissible lists L(N,m, d), where m lies in the interval:⌊
ln 2

ln 5
(N − 2p)

⌋
≤ m ≤

⌊
ln 2

ln 5
N

⌋
.

A rough upper bound is obtained by:

nb <
N

2
·

(
N

m

)
, with m =

⌊
ln 2

ln 5
N

⌋
, since

ln 2

ln 5
<

1

2
.

Using Stirling’s formula (as in the standard case), we get:(
N

kN

)
≈ 1√

2πk(1− k)N
·
(

1

kk(1− k)1−k

)N

, with k =
ln 2

ln 5
.

Taking base-2 logarithms:

f(N) < log2 N − 1− 1

2
log2(2πk(1− k))

− 1

2
log2 N −N · (k log2 k + (1− k) log2(1− k)) .

This yields the estimate:
f(N) < 0.98609N + 1

2
log2 N − 1.216.

Finally, we evaluate e = n−N + f(N) with p = 110:

e < −10.128α+ 1
2
log2 α+ 219.654,

which is strictly decreasing for α > 23.

e < −7 < 6 for α > 23.

Conclusion. We should have at least p + 1 = 111 minimal solutions, yet we have shown that the total
number is less than 96 with the Central Limit Theorem version of the Random List Theorem. This contra-
diction rules out the existence of a cycle with V0 = 2α as its minimal value. The recurrence hypothesis is
therefore verified, completing the proof.

Remarque 3.2. If needed, one can easily take α0 > 23—for example, α0 = 48—which is large enough to
enable the use of the Berry–Esseen inequality.
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3.2.3 Existence of a Value for Which the Sequence Diverges

Proof. As in the previous cases, our goal is to apply the Random List Theorem by counting the elements of
the set Up(N,V0), defined as the set of transition lists of length N such that V0 is the minimum value over
the orbit restricted to the first N terms.

The illustration below visualizes the different types of paths:

� The blue curve represents the boundary JGL(N,V0).

� The green line corresponds to a path (transition list) that stays entirely above the JGL boundary: it
is therefore admissible.

� The black line represents the Catalan triangle boundary.

� Green points indicate the endpoints of valid paths (those remaining above the JGL boundary).

� Black points indicate invalid paths that cross below the boundary.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 3: Valid and invalid paths in the transition triangle.

We show that:

� If the transition tN in the list JGL(N,V0) is of type 0, then

Up(N + 1, V0) = 2 ·Up(N,V0).

� If tN is of type 1, then:
Up(N + 1, V0) = 2 ·Up(N,V0)− Bo(N),

where Bo(N) denotes the number of paths of length N that reach the boundary JGL exactly at step
N .

As long as the boundary remains vertical (tN = 1), the quantity Up(N,V0) is increasing: we have
Up(N,V0) = 1, then Up(N + 1, V0) > Up(N,V0). Thus, the function is monotonic.

The value Up(N,V0) can be approximated by 2N−p, where p depends on the parameter a of the Syracuse
extension (i.e., (an+ 1)/2).

Numerical Example for a = 5: This corresponds to an effective slope of λ = ln 2
ln 5
≈ 0.43, measuring

the proportion of type 1 transitions.

N p Up(N) ≈ 2N−p

100 2.4691 297.5309

200 2.4994 2197.5006

500 2.5060 2497.4940

1000 2.5061 2997.4939

We observe that p converges to a constant as N increases, confirming that Up(N,V0) grows exponentially
and that the density of valid paths remains significant.
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Heuristic Observation: The asymptotic behavior appears to vary depending on the slope of the bound-
ary:

� If λ < 0.48, the growth of Up(N) is exponential (and p stabilizes);

� If λ > 0.50, p appears to diverge rapidly, significantly reducing the number of valid paths.

Constructive Lower Bound Method: We now aim to provide an explicit lower bound for Up(N).
We approximate the real boundary (with irrational slope λ) by a periodic boundary associated with a rational
approximation of λ = ln 2

ln 5
.

We use the upper rational approximation λ ≲ 4
9
≈ 0.444, corresponding to a transition pattern of length

9 with 4 type 1 transitions.
This pattern, although simpler than the actual boundary, always lies above it, so any admissible list

under the approximate boundary is also admissible for the true boundary.

1 2 3 4

1

2

3

4

Figure 4: Elementary 5× 4 pattern used to approximate the boundary.

This elementary motif allows approximation of the true JGL boundary using a simple periodic form,
facilitating exact path count estimation.

The following figure illustrates the juxtaposition of the red motif (periodic approximation) with the actual
boundary (in blue). The black diagonal is used to frame the regions resembling a ”Catalan trapezoid”.

5 10 15 20 25 30

4

8

12

16

20

24

Figure 5: True boundary (blue), 5× 4 motif approximation (red), and reference diagonal (black).
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Estimating the Number of Admissible Paths via a Periodic Motif. Let UN denote the
number of transition lists of length N that stay above the boundary approximated by a 4 × 5 rectangular
motif, corresponding to a slope of 4

9
.

We focus on the subsequence U9k, corresponding to lengths that are multiples of 9, i.e., to the concate-
nation of k motifs.

Assume that from some index k0 onward, we have:

U9(k+1) > 29−ek ·U9k and U9k0 = 29k0−l0 .

Then for all t > k0:

U9t >

t−1∏
k=k0

29−ek · 29k0−l0 = 29t−g(t) where g(t) := l0 +

t−1∑
k=k0

ek.

If g(t) admits a finite limit l as t→∞, then we obtain the asymptotic lower bound:

U9k > 29k−l, and hence Up(9k, V0) > 29k−l.

Analysis of the Recurrence for U9k. Let Ak,n denote the number of paths reaching the point with
coordinates (5k + n, 4k + n) on the boundary. Then we have:

U9k+1 = 2U9k −Ak,0,

U9k+2 = 2U9k+1 = 22 U9k − 2Ak,0,

U9k+3 = 2U9k+2 −Ak,1 = 23 U9k − 4Ak,0 −Ak,1,

U9k+4 = 2U9k+3 = 24 U9k − 8Ak,0 − 2Ak,1,

U9k+5 = 2U9k+4 −Ak,2 = 25 U9k − 16Ak,0 − 4Ak,1 −Ak,2,

U9k+6 = 2U9k+5 = 26 U9k − 32Ak,0 − 8Ak,1 − 2Ak,2,

U9k+7 = 2U9k+6 −Ak,3 = 27 U9k − 64Ak,0 − 16Ak,1 − 4Ak,2 −Ak,3,

U9k+8 = 2U9k+7 = 28 U9k − 128Ak,0 − 32Ak,1 − 8Ak,2 − 2Ak,3,

U9(k+1) = U9k+9 = 2U9k+8 = 29 U9k − 256Ak,0 − 64Ak,1 − 16Ak,2 − 4Ak,3.

Since Ak,0 ≤ Ak,1 ≤ Ak,2 ≤ Ak,3, we obtain the inequality:

U9(k+1) ≥ 29 U9k − 340Ak,3.

Expressing the quantity ek. Let us define:

29 ·U9k − 340 ·Ak,3 = 29−ek ·U9k.

This is equivalent to:

29 ·U9k

(
1− 340 ·Ak,3

29 ·U9k

)
= 29 ·U9k · 2−ek ,

and therefore:

1− 340 ·Ak,3

29 ·U9k
= 2−ek .

Taking natural logarithms gives:

ln

(
1− 340 ·Ak,3

29 ·U9k

)
= −ek · ln 2.

This expression is well-defined as long as the ratio
340·Ak,3

29·U9k
< 1, which we will justify later.

We now use the classical approximation:

ln(1 + u) ∼ u as u→ 0,

which yields:

ek ≈
1

ln 2
· 340 ·Ak,3

29 ·U9k
≈ 0.958 ·Ak,3

U9k
.

In particular, we obtain the useful upper bound:

ek <
Ak,3

U9k
.
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Upper Bound on Ak,3. We use an inequality derived from the Catalan trapezoid [4]:

Ak,3 <

(
9k + 6

5k + 3

)
−

(
9k + 6

4k + 2

)
.

Neglecting the second term, we get a crude upper bound:

Ak,3 <

(
9k + 6

5k + 3

)
.

Using the approximation ln(n!) ≈ n lnn− n, we derive:

lnAk,3 < (9k + 6) ln(9)− (5k + 3) ln(5)− (4k + 3) ln(4) ≈ 6.183k + 4.2,

so that:
Ak,3 < 28.921k+6.06.

Lower Bound on U9k. Since the boundary with slope 4
9
lies below the diagonal (slope 1

2
), we have:

U9k >

(
9k

4.5k

)
.

Using Stirling’s formula, this gives:

U9k >

√
2√

9πk
· 29k−

ln k
2 ln 2 .

Conclusion on ek and A Posteriori Justification. We can now return to ek and justify the
previous approximation ln(1 + u) ∼ u by showing that:

340 ·Ak,3

29 ·U9k
< 28.921k+6.06−(9k− ln k

2 ln 2 ) = 2−0.079k+ ln k
2 ln 2

+6.06,

which tends to 0 as k →∞. Thus, the use of the approximation is justified.
We then obtain:

ek < 2−0.079k+ ln k
2 ln 2

+6.06,

which for k ≥ 1000 yields:
ek < 2−0.079k,

i.e., a geometric sequence with ratio strictly less than 1.

Consequence: the series
∑

ek converges, and the function g(9k) = l0 +
∑k−1

j=k0
ej has a finite limit.

Choosing k0 = 1000, we obtain:

U9k > 29k−l0 with l0 = 2.69258,
∑

k≥1000

ek < 10−9.

Therefore:
Up(9k, V0) > 29k−2.7.

By using explicit recurrence relations between U9k+i and U9k for 0 < i < 9, we extend the bound to all
N :

Up(N,V0) > 2N−2.7 for all N.

Summary. For every N ≥ 23, let EN be the set of initial values V0 < 223 ≤ 2N such that V0 is the
minimum value along some transition list of length N, meaning Vn ≥ V0 for all 1 ≤ n ≤ N. This condition
ensures that V0 is the true minimum over its restricted orbit (we consider b = 1, so V0 > 0).

We apply the Random List Theorem with n = 23 and f(N) = N− 3, yielding:

e = n−N+ f(N) > 23−N+N− 3 = 20.

Therefore, by applying the Berry–Esseen inequality, we deduce that there are more than 520,481 > 218

solutions, and thus:
218 < #EN < 2N.

By construction, we have the inclusion EN ⊂ EP for all N > P, since the orbit condition becomes more
restrictive as the length increases.

Fix N1 = 23. We now show by contradiction that there exists at least one V0 ∈ EN1 such that V0 ∈ EN

for infinitely many values of N.
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Suppose the contrary: for every e ∈ EN1 , only finitely many integers N satisfy e ∈ EN. Let

Me = max{N | e ∈ EN}, ME1 = max
e∈EN1

Me.

Now take N = ME1 + 1. By hypothesis, no element of EN1 can belong to EN, so:

EN ⊂ EN1 and EN = ∅,

which contradicts the fact that #EN > 218. Therefore, the assumption is false, and there exists at least one
V0 ∈ EN1 that belongs to infinitely many sets EN.

Such a value V0 cannot yield a nontrivial cycle. Indeed, if the orbit of V0 formed a cycle from some index
n0, then Vn0 = Vn1 for some n1 < n0, and the minimality of V0 would force this equality to occur for a fixed
value of N, contradicting its membership in infinitely many EN.

(We disregard here the rare cases where a trivial cycle is reached from an initial value smaller than the
cycle’s minimum; such cases do not arise for b = 1.)

We now show, again by contradiction, that the sequence Vn diverges from this value V0. Suppose it were
bounded, i.e., there exists an upper bound M such that Vn < M for all n. Since V0 ∈ EN for infinitely
many N and Vn ≥ V0, the values Vn would all be distinct (otherwise a cycle would occur). This would imply
infinitely many distinct values in the finite interval [V0,M [, which is impossible.

Conclusion. There exists at least one initial value V0 such that the sequence Vn (and hence Un) diverges.
For instance, V0 = 7 is a plausible candidate.

� For a = 5 and b = 1, there exists at least one value V0 for which the sequence Vn diverges.

The same reasoning can be reproduced for any other odd integer b, with only trivial cycles requiring
adjustment.

Conclusion

The results presented in this work confirm that the dynamical behavior of the 5n + 1 extension differs
fundamentally from that of the classical 3n+ 1 case, while still exhibiting sufficient structural regularity to
allow a rigorous analysis using the Random List Theorem.

Two major points have been established:

� The number of nontrivial cycles is finite. All such cycles have been detected experimentally up to
V0 ≤ 223, and their nonexistence beyond this range has been rigorously proven using a combinatorial
method based on the enumeration of minimal transition lists.

� There exists at least one initial value V0 for which the sequence diverges. This divergence is justified
by the controlled growth in the number of valid paths above the JGL boundary, which itself is upper-
bounded by a periodic motif whose behavior can be estimated analytically.

The methodological framework employed here is fully generalizable to other extensions of the form an+b,
with appropriate adjustments to the fundamental constants and boundary structures. These results provide
a solid foundation for the exploration of entire families of Syracuse-like extensions, paving the way toward a
broader understanding of nonlinear discrete dynamics of Collatz type—such as those discussed, for instance,
in response to arXiv:2107.11160v4 [3].
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